
Algorithms and Architecture

William D. Gropp
Mathematics and Computer Science

www.mcs.anl.gov/~gropp

University of Chicago Department of Energy

Algorithms

• What is an algorithm?
♦ A set of instructions to perform a task

• How do we evaluate an algorithm?
♦ Correctness
♦ Accuracy

• Not an absolute

♦ Efficiency
• Relative to current and future machines

• How do we measure efficiency?
♦ Often by counting floating point operations
♦ Compare to “peak performance”

University of Chicago Department of Energy

Real and Idealized
Computer Architectures

• Any algorithm assumes an idealized
architecture

♦ Common choice:
• Floating point work costs time
• Data movement is free

♦ Real systems:
• Floating point is free (fully overlapped with other

operations)
• Data movement costs time…a lot of time

• Classical complexity analysis for numerical
algorithms is no longer correct (more
precisely, no longer relevant)

♦ Known since at least BLAS2 and BLAS3

University of Chicago Department of Energy

CPU and Memory Performance

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

ck
 R

at
e

(n
s)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM
Performance

Floating
point

relevant
Floating
point
irrelevant

University of Chicago Department of Energy

Trends in Computer
Architecture I

• Latency to memory will continue to
grow relative to CPU speed
♦ Latency hiding techniques require

finding increasing amounts of
independent work: Little’s law implies
• Number of concurrent memory

references = Latency * rate
• For 1 reference per cycle, this is already

100–1000 concurrent references

University of Chicago Department of Energy

Trends in Computer
Architecture II

• Clock speeds will continue to
increase
♦ The rate of clock rate increase has

increased recently ☺
♦ Light travels 3 cm (in a vacuum) in

one cycle of a 10 GHz clock
• CPU chips won’t be causally connected

within a single clock cycle, i.e., a signal
will not cross the chip in a single clock
cycle

• Processors will be parallel!

University of Chicago Department of Energy

Trends in Computer
Architecture III

• Power dissipation problems will force more
changes

♦ Current trends imply chips with energy densities
greater than a nuclear reactor

♦ Already a problem: The current issue of consumer
reports looks at the likelihood of getting a serious
burn from
your laptop!

♦ Will force
new ways
to get
performance,
such as
extensive
parallelism

University of Chicago Department of Energy

Itanium Power Dissipation

• Power is not
uniformly
distributed
across chip

• Peak power
densities
growing even
faster

University of Chicago Department of Energy

Consequences

• Gap between memory and
processor performance will
continue to grow

• Data motion will dominate the cost
of many (most) calculations

• The key is to find a computational
cost abstraction that is as simple
as possible but no simpler

University of Chicago Department of Energy

Architecture Invariants

• Performance is determined by memory
performance

• Memory system design for performance
makes system performance less
predictable

• Fast memories possible, but
♦ Expensive ($)
♦ Large (meters3)
♦ Power hungry (Watts)

• Algorithms that don’t take these
realities into account may be irrelevant

University of Chicago Department of Energy

Node Performance

• Current laptops now have a peak
speed (based on clock rate) of
over 2 Gflops (20 Cray1s!)

• Observed (sustained) performance
is often a small fraction of peak

• Why is the gap between “peak”
and “sustained” performance so
large?

• Lets look at a simple numerical
kernel

University of Chicago Department of Energy

Sparse Matrix-Vector Product

• Common operation for optimal (in
floating-point operations) solution
of linear systems

• Sample code:
for row=1,n

m = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*j++];
y[i] = sum;

• Data structures are a[nnz], j[nnz],
i[n], x[n], y[n]

University of Chicago Department of Energy

Simple Performance Analysis

• Memory motion:
♦ nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))
♦ Assume a perfect cache (never load same

data twice)
• Computation

♦ nnz multiply-add (MA)
• Roughly 12 bytes per MA
• Typical WS node can move 1-4

bytes/MA
♦ Maximum performance is 8-33% of peak

University of Chicago Department of Energy

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

SP Origin T3E Pentium Ultra II Power4 Xeon

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

University of Chicago Department of Energy

What About CPU-Bound
Operations?

• Dense Matrix-Matrix Product
♦ Most studied numerical program by

compiler writers
♦ Core of some important applications
♦ More importantly, the core operation

in High Performance Linpack
• Benchmark used to “rate” the top 500

fastest systems

♦ Should give optimal performance…

University of Chicago Department of Energy

The Compiler Will Handle It (?)

From Atlas

Compiler

Hand-tuned

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

University of Chicago Department of Energy

Performance for Real
Applications

• Dense matrix-matrix example shows that even
for well-studied, compute-bound kernels,
compiler-generated code achieves only a small
fraction of available performance

♦ “Fortran” code uses “natural” loops, i.e., what a user
would write for most code

♦ Others use multi-level blocking, careful instruction
scheduling etc.

• Algorithms design also needs to take into
account the capabilities of the system, not just
the hardware

♦ Example: Cache-Oblivious Algorithms
(http://supertech.lcs.mit.edu/cilk/papers/abstracts/a
bstract4.html)

University of Chicago Department of Energy

Challenges in Creating a Performance
Model Based on Memory Accesses

• Different levels of
the memory
hierarchies have
significantly different
performance

• Cache behavior
sensitive to details
of data layout

• Still no good calculus
for predicting
performance

Data Size (Bytes)
103 104 105 10 6 107 1081000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

U UVV UVV V UU VV V UUU VVV V UU V UVV VV UV UVUV VV UVU UVU VV UVU UVUV

STREAM
performance
in MB/s
versus data
size

Interleaved data causes
data to be displaced while
still needed for later steps

University of Chicago Department of Energy

Is Performance Everything?

“In August 1991, the Sleipner A, an oil and gas
platform built in Norway for operation in the
North Sea, sank during construction. The total
economic loss amounted to about $700 million.
After investigation, it was found that the failure
of the walls of the support structure resulted
from a serious error in the finite element
analysis of the linear elastic model.”
(http://www.ima.umn.edu/~arnold/disasters/slei
pner.html)

University of Chicago Department of Energy

Correctness and Accuracy

• Many current algorithms designed
to balance performance and
accuracy

• These choices often made when
computers were 106 times slower
than they are now
♦ Is it time to re-examine these

choices, particularly for applications
that are now done on laptops?

University of Chicago Department of Energy

Algorithms

• Exploit problem behavior at different scales
♦ Multigrid
♦ Domain Decomposition

• Generalizes multigrid (or multigrid generalizes DD)
• Provides a spectrum of robust, optimal methods for a

wide range of problems
• Nonlinear versions hold great promise

♦ Continuation
♦ Divide and conquer
♦ Multipole and Wavelets

• Cache-sensitive algorithms
♦ See Karp in SIAM Review 1996
♦ Even the Mathematicians know

about this now (McGeoch, AMS
Notices March 2001)

University of Chicago Department of Energy

Conclusions

• Performance models should count data
motion, not flops

• Computers will continue to have
multiple levels of memory hierarchy
♦ Algorithms should exploit them

• Computers will be parallel
♦ Algorithms can make effective use of

greater adaptivity to give better time-to-
solution and accuracy

• Denial is not a solution

